Bharati Vidyapeeth's College of Engineering for Women, Pune-43 Department of Electronics and Telecommunication Engineering <u>Subject: Information Theory and Coding Techniques</u> Unit Test I -- T.E(E &TC) Div II (Acad-Year : 2010-2011 Sem II)

Duration: 1 hour

Instructions:

- 1. Assume Suitable data, wherever necessary.
- 2. All Questions are Compulsory.
- 3. Bold numbers to the right indicate maximum marks.

<u>Q.1</u>

- **a)** Define Self-Information of the event $X = x_i$.
- **b)** Consider a source flipping a coin. How much information is contained in the message "the coin landed heads up"?
- c) Consider a fast-food restaurant in which a customer is nine times as likely to order a hamburger than a fish sandwich. How much information is contained in the message "the customer wants a hamburger"? How much information is contained in the message "the customer wants a fish sandwich"?
- **d)** Justify the statement "Lower probability implies higher degree of uncertainty and contains more information and vice versa"

<u>Q.2</u>

a) A weather information source transmits visibility information with the probabilities given as below:

Visibility

Very poor

Poor Moderate

Good

T 1 1 1 0	
Evaluate the entropy of a s	COURCA
Evaluate the childby of a s	source.
F J S S S S S S S S S S S S S S S S S S	

<u>Q.3</u>

Consider a fast food restaurant in which a customer is nine times as likely to order a hamburger than a fish sandwich. How much information is contained in the message, "the customer wants a hamburger"? How much information is contained in the message, "the customer wants a fish sandwich"? (05)

1/8 1/8 1/2

Probability

1/4

(05)

(15)

Date: 12/03/2010 Max Marks: 25 Bharati Vidyapeeth's College of Engineering for Women, Pune-43 Department of Electronics and Telecommunication Engineering <u>Subject: Information Theory and Coding Techniques</u> Unit Test II -- T.E(E &TC) Div II (Acad-Year : 2010-2011 Sem II)

Date: 01/04/2010

Max Marks: 25

Duration: 1 hour Instructions:

- 1. Assume Suitable data, wherever necessary.
- 2. All Questions are Compulsory.
- 3. Bold numbers to the right indicate maximum marks.

Q.1) Evaluate the efficiency, length and entropy of the source code containing the following symbols:

- x_1 is encoded as 1
- x_2 is encoded as 10
- x₃ is encoded as 100
- x₄ is encoded as 1000

Their probabilities of occurrence are given by:

 $P(x_1) = \frac{1}{4}, P(x_2) = \frac{1}{8}, P(x_3) = \frac{1}{8}, P(x_4) = \frac{1}{2}.$

Q.2) State Kraft Inequality Theorem.

Q.3) Define Hamming Weight and Hamming Distance of a Linear Block Code. (03)

Q.4) Consider the Convolutional Encoder shown below

- **b)** Sketch state diagram
- c) Sketch trellis diagram
- d) Find the free distance of this convolutional code

Input v1 v2 v2 v2 v2

(10)

(02)

(10)

BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques

		Time: 1 Hour	Class: T.E. I	Max. Marks: 30	
Q.1	[A] [B]	Shannon-Heartly The	•	y theorem. Compare it with 4 P/N_0	(8) (7)
Q.2	[A] [B]	rate and each sample that the successive s i) What is informatio ii) Can the output of channel with a bandwiii) Find the S/N ratio iv) Find the band	le is quantized into 1 of 1024 sample are statically independe in rate of source of this source be transmitted width of 10 KHZ and S/N ratio o required for error free transm width required for an AW ut of this source if S/N ratio is :	ent without error over an AWGN of 20 dB nission for part (ii) GN channel for error free	(8)

BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques Time: 1 Hour Class: T.E. I Max. Marks: 30

Q.1	[A] [B]	Explain the sphere packing problem. Explain Shannon Fano and Huffman Algorithm with suitable example.	(8) (7)
[A]		entropy? Show that the entropy is maximum , when all the messaging are value. Assume $m=3$.	(6)
[B]	Define t System. 1) Nois	he following with their significance and application in Digital Communication refree channel it inequality	(5)
[C]	Write a s 1) Da	short note on : ta Compaction annon Source Coding Theorem	(4)

Q.2

BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques Time: 1 Hour 30 Min. Class: T.E. I Max. Marks: 50

Q.1	[a]	Suggest a suitable polynomial for a (7, 4) systematic cyclic code and find code words for the following data words i) 1010 ii) 1111 iii) 0001 iv) 1000	(10)
	[b]	Explain FEC and ARQ in detail.	(8)
Q.2	[a]	Design a Linear Block Code with a minimum distance of three of a message block of size of 8 bits.	(10)
	[Ь]	Write short notes on: i) Fire Codes ii) GOLAY Codes	(8)
Q.3	[a]	What are Unger Bock's TCM design rules? Explain Asymptotic coding gain?	(7)
	[b]	Explain generator matrix and parity check matrix for (7,4) systematic code	(7)

BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques Time: 1 Hour 30 Min. Class: T.E. I Max. Marks: 50

	Tin	ie: 1 Hour 30 Min.	Class: T.E. I	Max. Marks: 50	
Q.1	[a]	function generators $g_1 = 1$	tion encoder with constraint length 111,g ₂ =101. eceived sequence 1010110101011	-	(10)
	[b]	Explain turbo code with interleaver in the encode	the help of encoder and decoder . er.	Explain the role of	(8)
Q.2	[a]	Construct a systematic ($X^2 + 1$ for the message	(7,4) cyclic code using generator p 1010	olynomial $g(x) = X^3 +$	(10)
	[b]	Explain with suitable exa capabilities of CRC codes	ample concept of "Burst error" and s.	comment detection	(8)
Q.3	[a]	Draw and explain block d them.	liagram of FEC and ARQ . Also state	e four comparisons between	(7)
	[b]	Explain : (i)Distance bound (ii)Performance bound (iii) Code gain			(7)